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The � isotype of protein kinase C (PKC�) is a member of the atypical PKC subfamily
and has been widely implicated in the regulation of cellular functions. Increasing evi-
dence from studies using in vitro and in vivo systems points to PKC� as a key regula-
tor of critical intracellular signaling pathways induced by various extracellular stim-
uli. The major activation pathway of PKC� depends on phosphatidylinositol (PI)-3,4,5-
trisphosphate (PIP3), which is mainly produced by PI-3 kinase. 3�-PI-dependent pro-
tein kinase 1, which binds with high affinity to PIP3, phosphorylates and activates
PKC�. Many studies demonstrated the involvement of PKC� in the mitogen-activated
protein kinase cascade, transcriptional factor NF�B activation, ribosomal S6-protein
kinase signaling, and cell polarity. An important molecular event in a cell is the asso-
ciation of PKC� with other signaling molecules, as well as scaffold proteins, to form
large complexes that regulate their pathways. The understanding of the mechanisms
underlying PKC�-mediated control of intracellular signaling is beginning to provide
important insights into the roles of PKC� in various cells.
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Structure of PKC�

Protein kinase C� (PKC�) was originally discovered as
a unique PKC isotype (1). To date in mammals, it is
classified into the atypical PKC (aPKC) subfamily, based
on its structural similarity to PKC�/� [human PKC� (2)
and mouse PKC� (3) are orthologs]. The aPKCs and other
PKC isotypes, namely, conventional PKC (cPKC) �, �I,
�II, and �, and novel PKC (nPKC) �, �, 	, and 
, form the
PKC family belonging to an extended group of Ser/Thr
protein kinases, AGC (cAMP-dependent protein kinase
(PKA), cGMP-dependent protein kinase (PKG), and PKC)
(4).

PKC�, as well as PKC�/�, consists of four functional
domains and motifs, including a PB1 domain in the N-
terminus, a pseudosubstrate (PS) sequence, a C1 domain
of a single Cys-rich zinc-finger motif, and a kinase
domain in the C-terminus (Fig. 1). The PB1 domain rec-
ognizes OPCA (OPR/PC/AID) motifs of other proteins,
such as PAR-6, ZIP/p62 and MEK5 (5) (see below). The
PS is a short stretch of amino acids which resembles a
substrate sequence except for Ala occupying the position
of Ser or Thr as a phospho-group acceptor, and is
assumed to block the substrate-binding cavity of the
kinase domain as an autoinhibition mechanism. The C1
domains of aPKC isotypes are different in terms of a
repeat structure from those of cPKCs and nPKCs that
contain two repeated zinc-finger motifs, C1A and C1B,
both of which are essential for interaction with and acti-
vation by a second messenger diacylglycerol (DG) and
phorbol-diester tumor promoters. Although the C1
domains of aPKCs are similar to those of C1A, aPKCs do

not respond to DG and phorbol-diesters (6). The kinase
domain of PKC�, as well as other members of the AGC
group, includes an ATP-binding region, an activation
loop, a turn motif, and a hydrophobic motif. The ATP-
binding region contains a Lys residue, Lys-281, which is
crucial for its kinase activity. A mutant whose Lys-281 is
substituted for other amino acids is usually used as a
kinase-defective dominant-negative form of PKC� (PKC�-
kn). The activation loop and turn motif contain important
Thr residues, namely Thr-410 and Thr-560, respectively,
which are phosphorylated upon activation. Recent stud-
ies reveal dynamic interactions of PKC� with other pro-
teins.

Activation mechanisms
The mechanisms of PKC activation mainly consist of

two events, release of the PS from the substrate-binding
cavity and phosphorylations of the kinase domain (7).
Upon liberation from the PS-dependent autoinhibition,
some lipids play important roles. cPKCs and nPKCs
interact with membrane lipids, such as phosphatidylser-
ine, and lipid metabolites such as DG, which presumably
induce the release of PSs from active sites resulting in
phosphorylation of their substrate proteins.

PKC� is also activated by lipid components, such as
phosphatidylinositols (PIs) (8), phosphatidic acid (9),
arachidonic acid (10), and ceramide (10). Among these
lipids, PI-3,4,5-trisphosphate (PIP3) has been the focus of
much interest with regards to its regulation of aPKCs in
various cells. Nakanishi et al. reported that enzymati-
cally synthesized PIP3 stimulates autophosphorylation of
PKC� purified from bovine kidney, whose phosphoryla-
tion is one of the requirements for protein kinase activa-
tion, suggesting that aPKCs can be regulated by PI-3
kinase (PI3K), which produces PIP3 from PI-4,5-bisphos-
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phate in response to various growth factors (8). In rat
3Y1 cells stimulated by epidermal growth factor (EGF) or
platelet-derived growth factor, overexpression of p110, a
catalytic subunit of PI3K, enhances PKC�/� activity (11).
To date, there are many lines of evidence on activations of
PKC� and PKC�/� by PI3K in living cells, e.g., adipocytes
(12) and monocytes (13). How does PIP3 interact with
aPKCs?

PIP3 directly binds to pleckstrin homology (PH)
domain–containing protein kinases, e.g., protein kinase B
(PKB; also known as Akt) and 3�-PI–dependent protein
kinase 1 (PDK1). The PH domain of PDK1 has a higher
affinity for PIP3 than that of PKB/Akt (14). PDK1 is acti-
vated by binding PIP3 through its PH domain, and
attaches to the hydrophobic motifs of AGC kinases, so
that they are phosphorylated at a Thr residue in each
activation loop (15) (Fig. 2). The hydrophobic motifs of
aPKCs include a short sequence, Phe-Glu-Gly-Phe-Glu-
Tyr, which is very similar to that of PDK1-binding sites of
PKC-related protein kinases, Phe-X (any amino acid)-X-
Phe-Asp-Tyr (16) (Fig. 1). In the activation loop of PKC�,
Thr-410 is phosphorylated by PDK1 (17, 18). In embryo-
nic stem cells lacking PDK1 as a result of genetic
manipulation, PKC� is not phosphorylated at Thr-410,
markedly suggesting that PKC� is a physiological sub-
strate of PDK1 (19). Although a T410A mutant of PKC�,
whose Thr-410 is substituted for Ala, loses enzymatic
activity, a Glu-mutant T410E, probably mimicking a

phosphorylated Thr, retains its activity (17, 20). These
findings suggest that Thr-410 phosphorylation is essen-
tial for PKC� activation.

Following the Thr-410 phosphorylation, PKC� presum-
ably exposes the kinase domain for further phosphoryla-
tion. Thr-560 in the turn motif of PKC� is a key residue
for activation (18), since in PKC� and PKC�II, phosphor-
ylations of Thr-638 and Thr-641, respectively, corre-
sponding to Thr-560 in PKC� are required for their cata-
lytic functions and for locking these kinases in a
catalytically competent state (21, 22). The T410E active
mutant of PKC� shows autophosphorylation but two Thr-
560 mutants, T560A and T560E, do not in labeling exper-
iments in vitro, indicating that Thr-560 is the sole auto-
phosphorylation site in PKC� (23). In living cells,
whether Thr-560 of PKC� is phosphorylated by itself, by
another PKC� intermolecularly, or by other protein
kinases including other PKC isotypes, remains to be
resolved.

Does PIP3 activate aPKCs only through PDK1 activa-
tion? There are no discernible effects of PIP3 on truncated
PKC� and PKC�/�, both of which lack the PS sequence,
whereas PIP3 induces dose-dependent increases in the
activity of a T410E/T560E PKC� double mutant; there-
fore, this mutant cannot phosphorylate the kinase
domain (23). This suggests that PIP3-induced activations
of aPKCs are at least partly dependent on the presence of
the PS sequences in their N-termini, and that these

Fig. 1. Schematic representation of domain
structure of PKC�. PKC� consists of a PB1
domain in the N-terminus, a pseudosubstrate (PS),
a C1 domain, and a Ser/Thr kinase domain in the C-
terminus. The kinase domain includes an ATP-bind-
ing region, an activation loop, a turn motif, and a
hydrophobic motif. In the ATP-binding region, Lys-
281 is essential for kinase activity. Thr-410 in the
activation loop is phosphorylated by PDK1 which
binds to the hydrophobic motif. Thr-560 in the turn
motif is the autophosphorylation site and its phos-
phorylation is also crucial for the activation.

Fig. 2. Schematic representation of PIP3
and PDK1 in PKC� activation. The p85 subu-
nit of PI3K interacts with the phosphorylated
Tyr residues of receptor-Tyr kinases (RTKs) in
responses to their ligands, and activates the
p110 catalytic subunit, thereby producing PIP3.
PDK1 binds to PIP3 via its PH domain, and
becomes activated. The PDK1 interacts with
PKC� and phosphorylates the kinase domain
(KD) at Thr-410, which induces Thr-560 phos-
phorylation. The PKC� simultaneously and
directly interacts with PIP3, which releases PS-
dependent autoinhibition. Both contributions of
PIP3 and PDK1 are necessary for the complete
and stable activation of PKC�.
J. Biochem.
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apparent dependencies are most readily explained by
their liberation from PS-dependent autoinhibition.
Although no PIP3-binding region in PKC� has been iden-
tified, collectively, PIP3 contributes to PKC� activation in
two ways: direct modulation by the PS-dependent autoin-
hibition and indirect modulation by phosphorylation of
the kinase domain through PDK1. Both contributions
may be necessary for the complete and stable activation
of PKC�.

Furthermore, specific protein–protein interactions
affect PKC activities. Several proteins interact with and
inhibit aPKCs. Prostate apoptosis response–4 (Par-4)
interacts with the C1 motifs of aPKCs and inhibits their
activities (24). A product of Caenorhabditis elegans parti-
tioning defective gene-3 (PAR-3) (also known as ASIP,
aPKC-specific interacting-protein, a mammalian homolog
of PAR-3) binds the kinase domains of aPKCs and inhib-
its their activities (25, 26). An OPCA motif–containing
protein, PAR-6 (a product of partitioning defective gene–
6) binds to the PB1 domains of aPKCs (27). Furthermore,
PAR-6, PAR-3, and aPKC form a ternary complex (25,
27). In the complex, PAR-6 suppresses PKC�/� activity,
which is released by the further association of an active
form of Cdc42 (28). In addition, several interacting pro-
teins provide specificities of functional timing and loca-
tion of aPKCs (see below).

Signaling and functions
Mitogen-activated protein kinase (MAPK) cascade.

Many studies have shown that PKC� is involved in the
MAPK cascade in various cells (29–32). In monkey COS
cells stimulated by serum or tumor necrosis factor �
(TNF�), an active mutant of rat PKC� or Xenopus PKC�

(previously known as an amphibian PKC�) activates
MAPK-kinase MEK1 and a MAPK ERK1, but a PKC�-kn
mutant does not (29). In thyroid cells, overexpression of
wild-type PKC� activates ERK1 and ERK2, and
increases transcriptional activity of Elk-1, a well-estab-
lished target of ERK1 and ERK2, whereas thyroid-stimu-
lating hormone does not (31). What is the target of PKC�

in the MAPK cascade? Interestingly, overexpression of an
active form of PKC�, which lacks PS, also activates
MEK1 but not Raf1 in COS cells (31). In human alveolar
macrophages, lipopolysaccharide (LPS) activates MEK1,
ERK1 and ERK2 but not Raf1 (32). At this point, endog-
enous PKC�  is activated and induced to associate with
MEK1. Moreover, the myristoylated PKC�-PS peptide,
which inhibits PKC�, blocks these LPS effects (32). These
findings suggest that PKC� functions as a MEK1 kinase,
independent of the Raf1 pathway. However, it is still
unclear whether PKC� phosphorylates MEK1 directly or
indirectly (31, 32). Thus, to understand the functions of
PKC� in the MAPK cascade, it is important to clarify this
point.

On the other hand, PKC� was reported to function as
an adapter in the MEK5-ERK5 pathway, which is
another MAPK cascade critically involved in mitogenic
activation by EGF (33). In response to EGF, endogenous
PKC� binds to MEK5 at its OPCA motif and increases
ERK5 activity in the human transformed-cell line
HEK293 (33). Conversely, overexpression of the MEK5-
OPCA peptide or the PKC�-PB1-domain peptide, both of

which interfere with PKC�-MEK5 interaction, inhibits
the ERK5 activity (33). Importantly, overexpression of
PKC�-kn can also increase this EGF-induced ERK5
activity, suggesting that PKC� functions only as an
adapter (33). Furthermore, PKC� binds to and activates
PKB�/Akt3 by phosphorylation at the C-terminal Ser of
PKB�/Akt3 (34). Interestingly, the phosphorylation does
not depend on the PKC� activity, but probably depends
on an as yet unidentified type of PDK, PDK2 (34).
Although a novel and interesting function of PKC� as an
adapter independent of its enzymatic activity is proposed
in the above studies, further studies focusing on this
issue in various signaling molecules are required.

From receptor signaling complexes to activation
of NF�B transcriptional factor. In signaling for cell
growth and survival, extracellular ligands, e.g., TNF�,
interleukin-1 (IL-1), and nerve growth factor (NGF), play
their roles most likely through regulations of signaling
pathways from their receptor complexes to their target
gene expressions mediated by transcription factors, such
as nuclear factor �B (NF�B) (Fig. 3). PKC�–kn blocks
responses of NF�B to these stimuli, indicating that PKC�

is critically involved in NF�B activation in signal trans-
ductions of TNF� and IL-1 (35, 36). An important issue
concerning the involvement of PKC� in these signaling
pathways is its interactions with those receptor-signaling
complexes. In this regard, OPCA motif–containing ZIP
(zeta-interacting protein) homologs provide a mechanis-
tic clue (37–39). Puls et al. first showed that PKC� binds
to rat ZIP in a yeast two-hybrid system (37). Since ZIP
homologs including human 62-kDa Lck-binding protein
(p62) (40) have been cloned using different methods (39),
we use the term ZIP/p62 in this article. Furthermore, two
alternative-spliced forms, ZIP2 and ZIP�, were reported
(41, 42). ZIP/p62 contains a TRAF6 (TNF� receptor-asso-
ciated factor 6)-binding site (43), whereas ZIP2 deletes
this site.

ZIP/p62 links PKC� or PKC�/� to the TNF� receptor
signaling complex including TRAF2 and receptor-inter-
acting protein (RIP) (35). In human carcinoma HeLa cells
and HEK293 cells, ZIP/p62 selectively interacts with RIP,
but not with TRAF2 (35). Furthermore, ZIP/p62 links
PKC� to IL-1 and NGF receptor complexes including
TRAF6 (36, 43). In these cases, ZIP/p62 only functions as
an adapter or a scaffolding. However, ZIP/p62 antago-
nizes Par-4-induced PKC� inhibition and apoptosis of
human osteosarcoma U2OS cells induced by TNF� (44).
This suggests that ZIP/p62 also plays a critical role in the
regulation of PKC� activity in addition to its adapter
function (44). Although the activation mechanisms of
PKC� containing ZIP/p62 are not understood, conforma-
tional changes may render PKC� accessible to their sub-
strates and thereby inducing NF�B activation.

Functions of NF�B including DNA binding, transacti-
vation, and nuclear translocation are blocked by its cellu-
lar inhibitor protein I�B. An essential component of the
NF�B pathway is the I�B kinase (IKK) complex, which
phosphorylates I�B and triggers its degradation to
release NF�B from its cytosolic state and then to translo-
cate it into the nucleus (45). PKC� phosphorylates the
IKK� subunit in vitro, possibly through their direct inter-
action (46). In HEK293 cells, PKC� interacts with IKK�

through each catalytic domain in a TNF�-stimulation-
Vol. 133, No. 1, 2003
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dependent manner, thereby activating IKK� (46). In the
lungs of PKC�-deficient mice, TNF�-induced IKK activa-
tion is depressed (47). These findings indicate that PKC�

is involved in the IKK signaling complex.
Collectively, aPKCs transduce signals from the recep-

tors of TNF�, IL-1, and NGF to the activation sites of
NF�B in vivo. Furthermore, they may be involved in a
variety of signaling pathways from receptor complexes to
expressions of their target genes by activation of tran-
scription factors.

p70S6 kinase signaling cascade. p70 ribosomal S6
protein kinase (p70S6K), which is phosphorylated and
activated in response to mitogenic stimuli, modulates
translation of a subset of mRNAs that encode ribosomal
proteins and translation elongation factors. Akimoto et
al. first reported that PKC�/� directly associates with
p70S6K, and that dominant negative forms of this kinase
suppress the serum-induced activation of p70S6K in liv-
ing cells (48). In coexpression experiments, PKC�-kn
antagonizes p70S6K activation by EGF, PDK1 and PI3K,
and p70S6K associates with PDK1 as well as with PKC�

in vivo in a growth-factor-independent manner (49). This
suggests the existence of a multimeric PI3K-p70S6K sig-
naling complex. Then, does PKC� modulate p70S6K
activity in this complex? p70S6K is one of the AGC-
kinases, and phosphorylations of its Thr-229 and Thr-389
in the activation loop and the hydrophobic motif, respec-
tively, are important for activity. Myristoylated PKC�, a
constitutive active form of PKC�, synergistically
enhances PDK1-induced phosphorylations, as well as
simply increases phosphorylations, of these residues,
which induces prolonged activation of p70S6K (50). Thus
collectively, aPKCs apparently play crucial roles in
p70S6K activation. However, recombinant aPKCs do not
directly phosphorylate p70S6K in vitro (48, 50). The myr-
istoylated PKC� does not occlude EGF-dependent activa-
tion of p70S6K (49). Moreover, the myristoylated PKC�

can only enhance Thr-389 phosphorylation in the catalyt-

ically competent p70S6K (50). These would suggest that
aPKCs alone are not sufficient for the complete activa-
tion of p70S6K. Multiple signals, such as mammalian
target of rapamycin (mTOR) and PKB/Akt, are required
for p70S6K activation. Thus, aPKCs may play a tuning
role in translation together with other regulators.

Cell polarity. Cell polarity is fundamental not only
for cell functions but also for development and tissue
maintenance. Recent studies have revealed the impor-
tance of the ternary complex of PAR-3, PAR-6, and PKC�

or PKC� in cell polarity (25, 27, 51). The PAR-3/ASIP-
PAR-6-PKC� complex controls formation of tight junc-
tions in MDCK cells, an epithelial cell line derived from
the dog kidney (52). PKC�-kn, as well as PKC�-kn, dis-
rupts localization of ZO-1, a component of the tight junc-
tion, and probably interferes with the establishment of
cell polarity (52). Overexpression of the regulatory
domain (amino acids 1–126) of PKC� causes a similar
defect in the tight junction assembly, whereas a mutant
containing two Asp residues (Asp-62 and Asp-66) within
the PB1 domain does not (53). These findings suggest
that both of the kinase activity and interactions via the
PB1 domain are necessary for PKC� to control cell polarity.

In addition to epithelial cells, PKC� also controls polar-
ity in migrating astrocytes. Scratching a confluent mon-
olayer of rat primary astrocytes leads to their polariza-
tion at the leading edge, so that the microtubule
organization center (MTOC) and the Golgi apparatus
reorganize to face the new free space, and directed cell
protrusion and migration specifically occur perpendicu-
lar to the scratch (54). Overexpressions of PKC�, PKC�-
kn and PAR-6 inhibit MTOC and Golgi apparatus polari-
zation without affecting the direction of protrusion (54).
Collectively, the ternary complex of PAR-3/ASIP-PAR-6-
aPKC plays an essential role in polarization of some cell
types.

A neuron is a typical polarized cell. A Leu-zipper
motif–containing protein FEZ1 (fasciculation and elonga-
tion protein; zygin/zeta-1) interacts with PKC� at the N-
terminal region including the PB1 domain, but does not
contain any OPCA motif (55). FEZ1 is a human homolog
of the C. elegans locomotory-defect gene product UNC-76
that is necessary for axonal bundling and elongation
within axonal bundles (56). Coexpression of FEZ1 and an
active form of PKC� stimulates dendritic neurite elonga-
tion of rat pheochromocytoma PC12 cells, whereas
expression of FEZ1 alone does not affect the cells (55).
FEZ1 is phosphorylated by PKC� and then translocated
from the cytoplasmic membrane to the cytoplasm (55).
Furthermore, a protein localized in the postsynaptic den-
sity and dendritic raft, PSD-Zip70, is a closely related
homolog of FEZ1 (57). Although evidence on cellular
functions and phosphorylation is limited, interaction of
PKC� with FEZ1/PSD-Zip70 may play an important role
in neurite elongation and maintenance of the postsynap-
tic structure.

Furthermore, a tumor suppressor gene at 8p22
(LZTS1), a frequently altered chromosome region in
many malignant tumors, including esophageal, prostate,
and breast cancer, encodes FEZ1 (58, 59). FEZ1 is associ-
ated with microtubule components in human epithelial
cells (59). Combined with these findings, PKC� through its

Fig. 3. Schematic representation of involvement of PKC� in
signaling pathways from receptor complexes of TNF�, IL-1,
and NGF to NF�B activation. ZIP/p62 links PKC� to RIP in
TNF� receptor (TNFR) complex and to TRAF6 in complexes of IL-1
receptor (IL-1R) and NGF receptor (NGFR). The PKC� phosphor-
ylates and activates IKK, which induces I�B degradation, thereby
inducing nuclear translocation, DNA-binding, and transactivation
of NF�B.
J. Biochem.
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interaction with FEZ1/PSD-Zip70 might be also involved
in mechanisms underlying human carcinogenesis.

Long-term potentiation (LTP). In the brain, not
only a 75-kDa protein of the native PKC�, but also a
smaller 51-kDa protein is detected by immunoblotting
(60). The amount of this 51-kDa protein referred to as
PKM� increases in hippocampal CA1 pyramidal cells
during LTP maintenance (60, 61). PKM is a catalytic
domain released from PKC by proteolysis. Injection of a
predicted recombinant PKM� increases the AMPA (�-
amino-3-hydroxy-5-methylisoxazole-4-propionic acid)
receptor–mediated excitatory postsynaptic current
amplitude of neurons, and this PKM�-mediated increase
in the current completely occludes LTP (62). Low concen-
trations of chelerythrine and a myristoylated PKC�-PS
peptide, both of which inhibit PKC�, also impair LTP
maintenance (62). Furthermore, a transgenic fly that
overexpresses PKM� enhances memory after massed
training (63). Chelerythrine and the induction of a domi-
nant-negative form of PKM� inhibit memory without
affecting learning in wild-type flies (63). These findings
interestingly imply that PKM� is both necessary and suf-
ficient for maintenance of LTP and memory (62, 63).
However, the importance of PKM� in LTP is not clear
because the inhibition of memory by the kinase-negative
form of PKM� may reflect its dominant-negative effects.
Although chelerythrine also inhibits memory, its specifi-
city to PKM� remains unclear. Thus, the loss of function
of PKM� needs to be examined to confirm its importance
in LTP maintenance.

Another possibility of production of a kinase-domain
protein of PKC� has emerged. A PKC�-related (PKC��)
cDNA includes a short alternative sequence upstream of
the region encoding PS (64, 65). Although PKC�� cDNA
was previously assumed to be derived from a splicing
intermediate of PKC� mRNA, the alternative sequence of
rat PKC�� cDNA presents as a single exon (exon 1�) at
about 50 kb upstream of exon 5 encoding PS in the PKC�

gene, Prkcz (66). The PKC�� mRNA is expressed in a
human prostate cancer cell line, and the sequence
upstream of exon 1� has promoter activity in the cells
(66). From the mRNA sequence, a protein of the kinase
domain with a molecular weight of 46,600 is deduced
(65), whose size is interestingly similar to that of PKM�.
From the viewpoint of brain-specific expression, PKM�

might be a variant form of PKC� alternatively tran-
scribed from exon 1� of the PKC� gene, rather than that
produced by proteolysis. Further studies are needed to
clarify this point and to elucidate the molecular mecha-
nisms underlying LTP maintenance by PKM�.

Perspectives
What are the differences in physiological functions

between PKC� and PKC�/�? Although there is a report on
differences in nucleocytoplasmic translocation between
PKC� and PKC�/� (67), obvious functional differences
have not been revealed in in vitro experiments. However,
clear differences may be observed in vivo. PKC�-deficient
mice normally develop and are apparently normal, but
exhibit phenotypic features of mildly impaired matura-
tion of B cells and a reduced number of Peyer’s patches
(47, 68), whereas PKC�/�-deficient mice die at the embry-

onic stage (see accompanying article on PKC�/� by Suzuki
et al.). Fly DaPKC (Drosophila aPKC) and nematode
PKC-3 (aPKC of C. elegans) are key molecules at each
stage of development, and their deficiencies cause death
at the embryonic stage (69, 70). On the basis of primary
structures, DaPKC and PKC-3 are more related to PKC�/�
than to PKC�. Thus, in mammals, the developmental
control must be dependent on PKC�/� rather than on
PKC�. What then is the main role of PKC�? Does it only
compensate the roles of PKC�/�? Many questions remain
unanswered.

Although not discussed in this article, there are other
important aspects on cellular functions of PKC�, such as
regulation of glucose-transporter vesicles (71). Including
these aspects, many lines of evidence documenting the
role of PKC� in various cellular functions are accumulat-
ing. We can approximately account for the diverse physi-
ological functions of PKC� at the cellular and biological
levels independently. However, it is largely unclear how
the functions of PKC� at the cellular level contribute to
the maintenance of homeostasis in vivo. Therefore,
future studies should be aimed at integration of functions
of PKC� in vitro and in vivo.
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